

Dublin Regional Energy Masterplan

Key Findings For Decarbonising Dublin's Heat, Electricity and Transport Sectors Towards 2030 & 2050

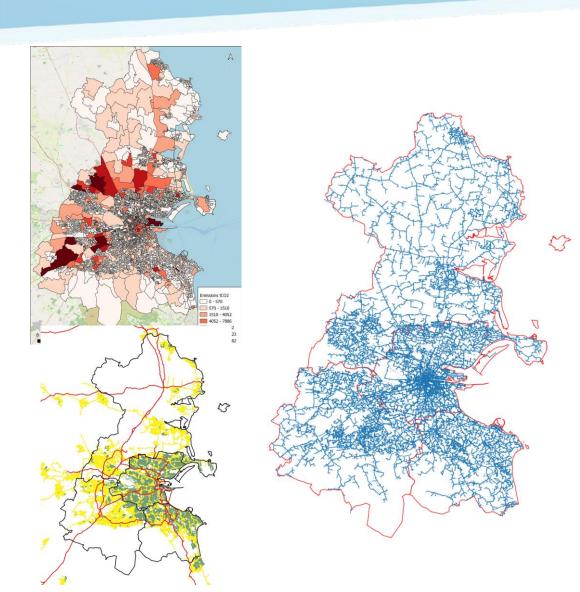
Towards a cleaner, healthier Dublin

Dublin Regional Energy Masterplan Team

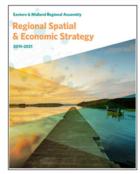
- Eoin Ahern Energy
 Manager / Transport &
 Renewable Lead
- John O'Shea Energy
 Systems Analyst / Heat &
 Electricity Lead

Rebecca Cachia - Energy Engineer / Emissions & Energy Efficiency Lead

Comhairle Contae Fhine Gall Fingal County Council



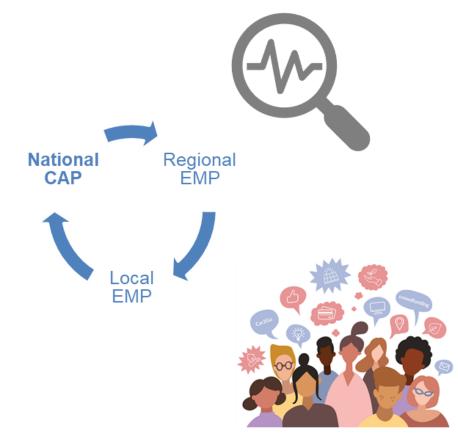
Dublin Regional Energy Masterplan


- First of its kind in Ireland building upon best international practice, example for other regions in Ireland to follow
- Cost-optimal pathway to 2030 and 2050 targets
- Holistic integrated energy model looking ALL energy sectors (heat, transport and electricity) and considering local technical constraints
- Digital twin of the local energy landscape –
 evidence base for informing policy &
 infrastructure planning
- Spatially-led (topographical & spatial constraints included)
- Also considers the wider social & economic impacts

Supporting National, Regional & Local Policy & Planning

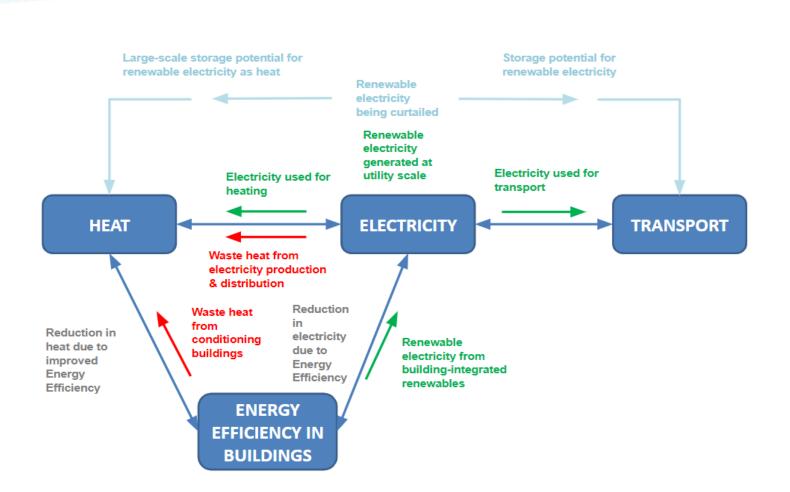
National — National Planning Framework (assess GHG Impact of CDPs), CAP (Contribution to national targets)

Regional – Eastern & Midlands Regional Assembly RSES (RPO 3.6, 7.35, 7.38, 7.40, 7.42)

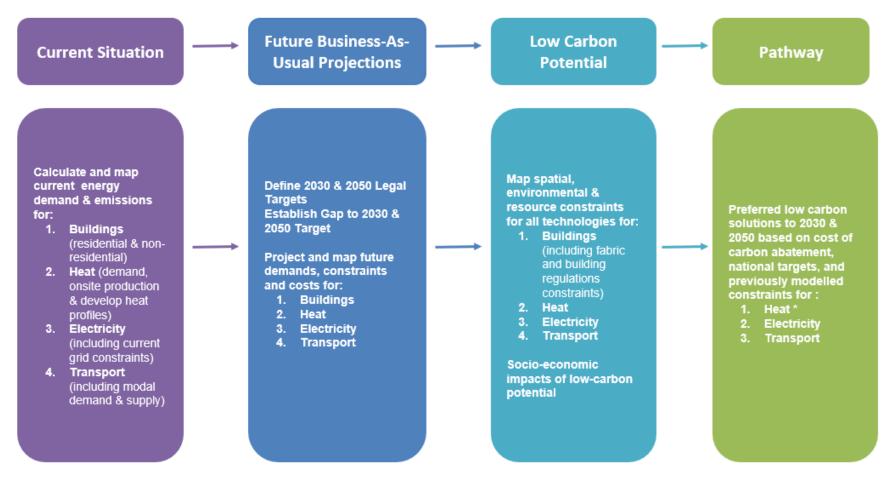

Local — Climate Change Action Plans, County Development Plans, Decarbonising Zones, SEC Masterplans

Potential for Supporting Decarbonisation

into the Future


- SEC Masterplans Continue evidence base sharing for local energy masterplan development
- Feedback into Climate Action Plan Regional constraints & contributions
- Citizen & stakeholder engagement Online platform to vote for technologies in their area/register interest for aggregating projects, provide own data to refine data sets
- Provide evidence & insights to mobilise green investment

Masterplan Overview



- The main energy sectors identified by this masterplan are the heat, electricity and transport sectors.
- Holistic approach to modelling energy demand is of utmost importance
- The flow and synergies between each energy sector, are captured energy efficiency in buildings impacts both the heat and electricity sector, whilst transport would impact the electricity sector.

Masterplan Overview

^{*} Includes building fabric energy efficiency improvements

Big Challenge - Need to work together!

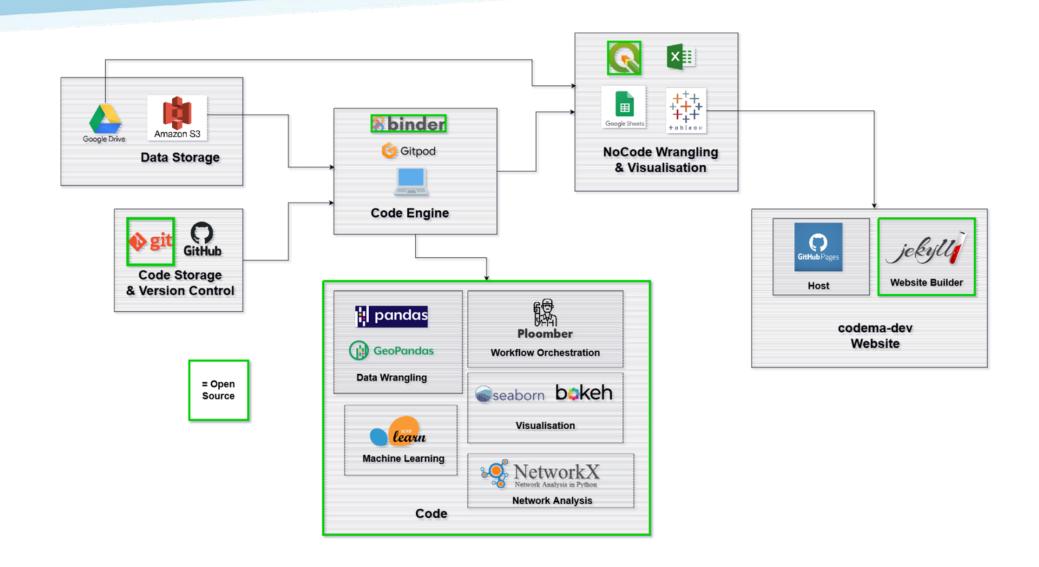
- Prioritised use of open-source tools Python-based with a high degree of replicability
- Resources and maps available online which allow for general public to find answers to energy questions in their area and increase engagement with the area of local energy available on our Github and Tableau Public
- Making useful data available (with some pre-processing completed) as a starting point for further research by wider organisations and Academia e.g. working with National Residential Energy Modelling Group agreed a standardised process for cleaning data for wider use
- Output being used to develop local policy in the areas of heat, electricity and transport via County Development Plans, Decarbonisation Zone, SEC Masterplans (lasso tool) etc.

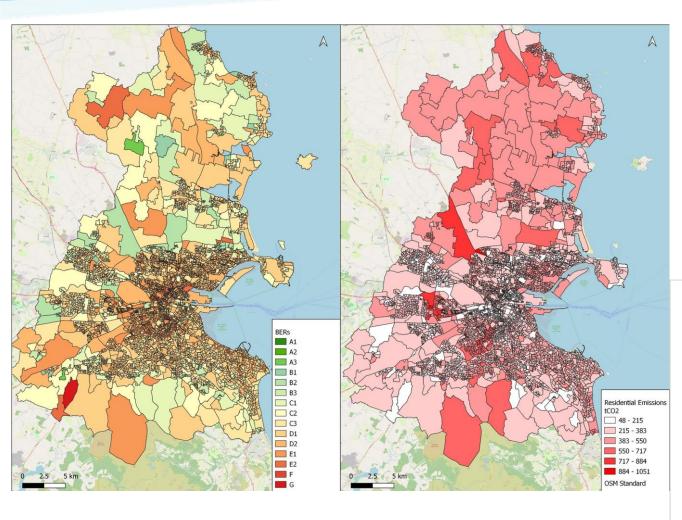
Environmental Protection Agency An Ghníomhaireacht um Chaomhnú Comhshaoil

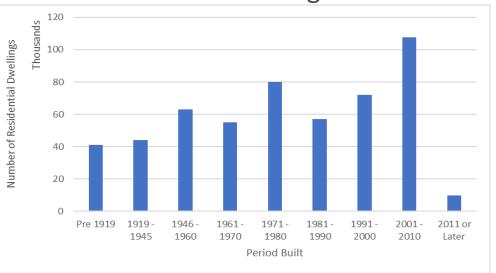
Serving the Midlands, South West and Wales

Comhairle Contae Fhine Gall Fingal County Council

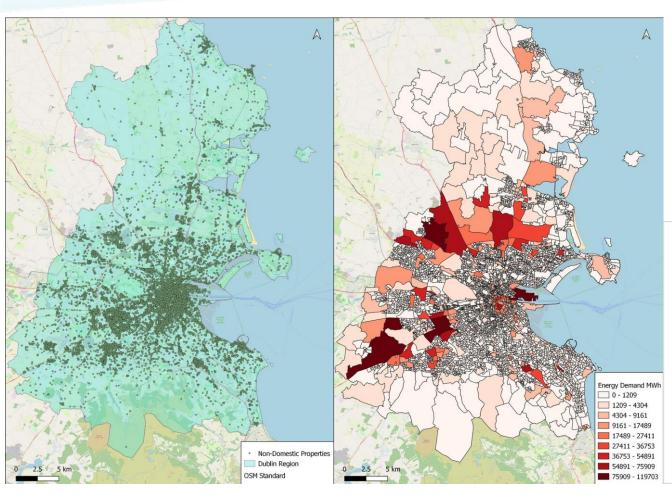
Central Office



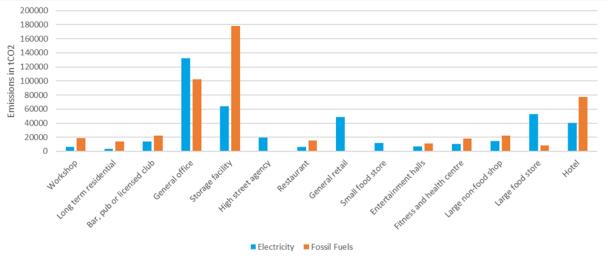

Novel Approach



Current SituationBuildings - Residential

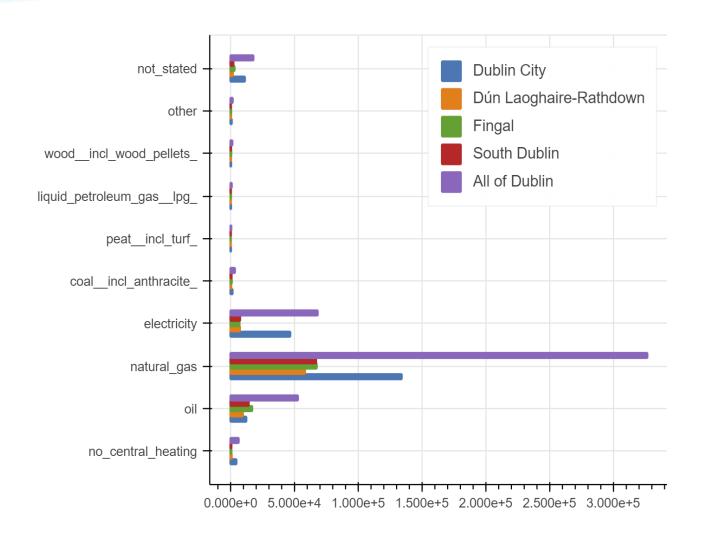


- The housing stock is ageing & poorly rated.
- 78% of residential buildings built before year 2000
- Most common BER is D2 rating (17%)
- Buildings rated D1 or worse make up
 58% of the housing stock



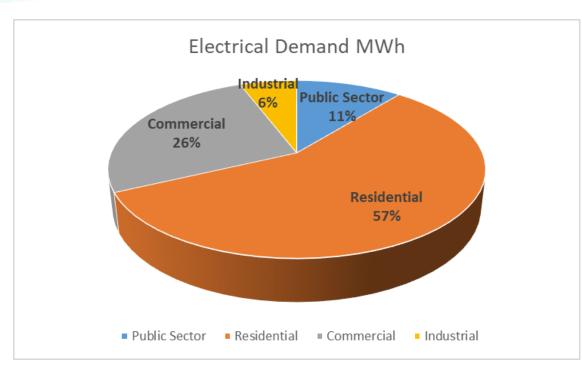
Current SituationBuildings - Non-Domestic

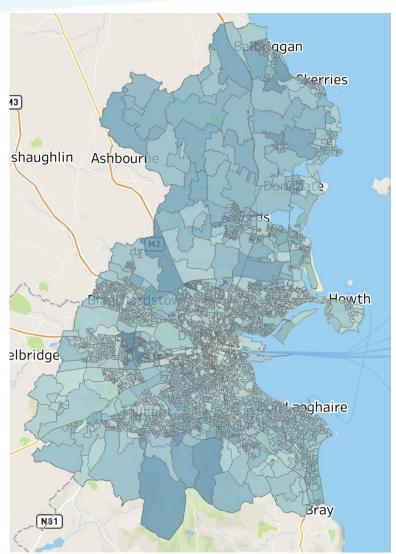
- The total energy demand from nondomestic buildings is 6,300 GWh
- Commercial buildings and services (65%), the public sector (20%) and industrial uses (15%)

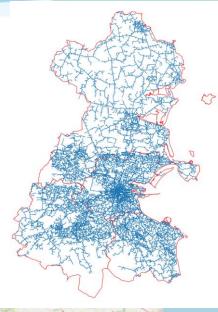


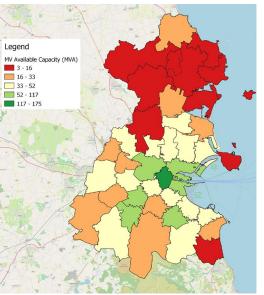
Current Situation

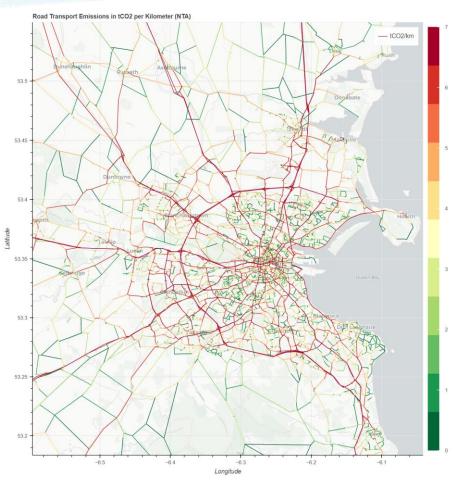
Heat

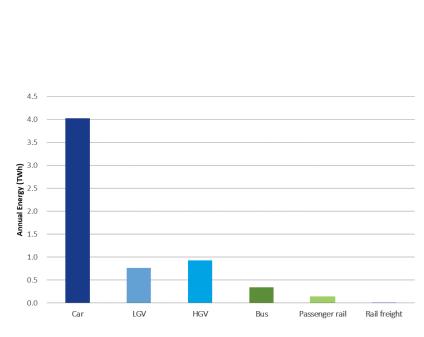


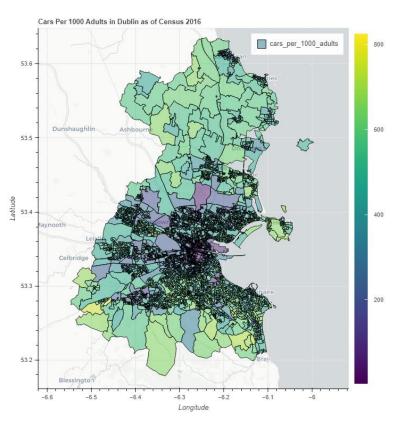

- Total current heat demand in Dublin is 10,328 GWh
- Gas is the predominant heat source - gas boilers currently cover 90% of heat demand in Dublin
- Predominantly individual heating systems in each building



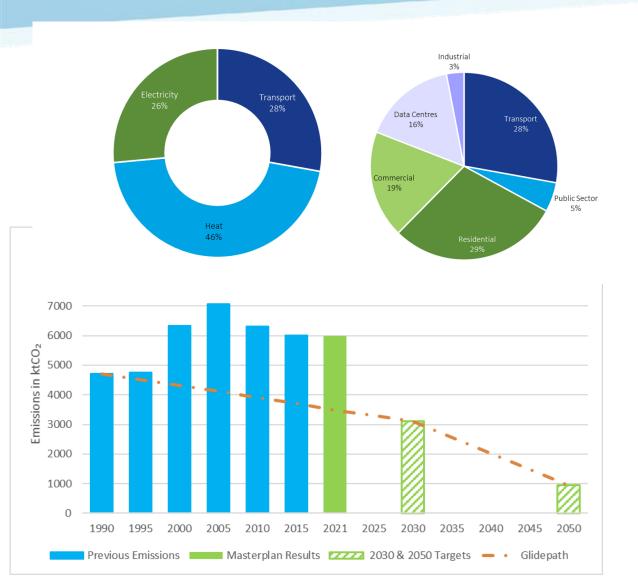

Current Situation Electricity





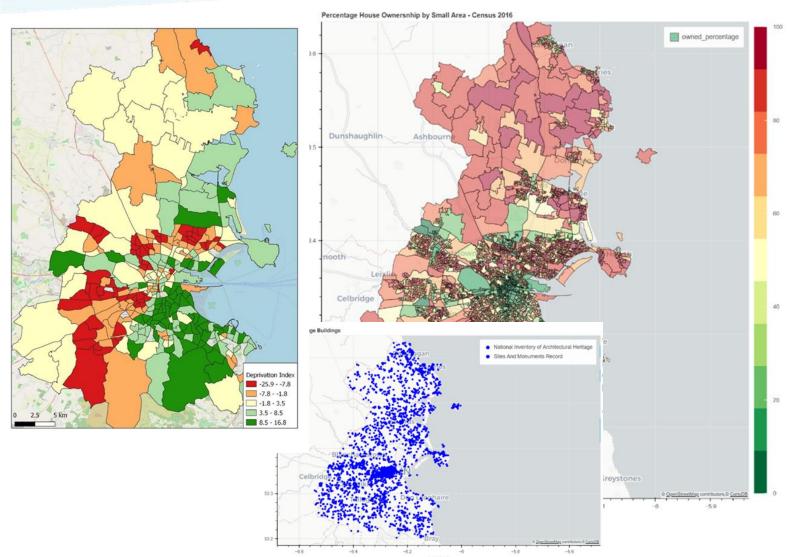


Current SituationTransport



Current Situation

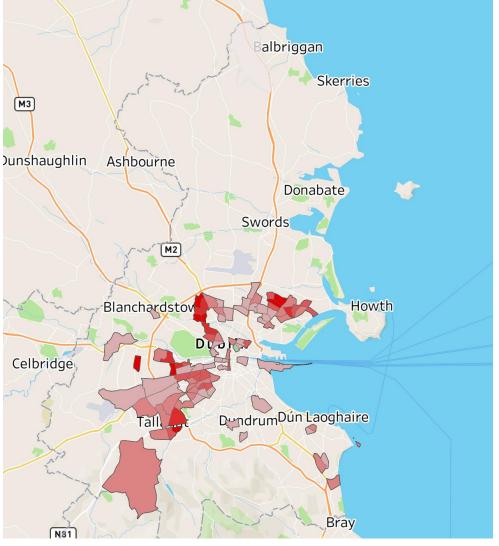
Total Emissions & Gap to Target



- Dublin's emissions account for 5,699 ktCO₂, 4.22 tonnes of CO₂ per person (for the sectors identified in the DREM)
- Heat 46%, transport 28% and electricity at 26% of total emissions
- The sectors that have the highest impact on emissions are the residential and transport sector, which combined, contribute 57% to total emissions.
- The current gap to the **2030 target** amounts to 2,856 ktCO₂ (**48% reduction in emissions** needed to meet the 2030 target from 2021).
- A reduction of 5,025 ktCO₂ (84% reduction in emissions to meet the 2050 target from 2021)
 will be needed to meet the 2050 net zero target.

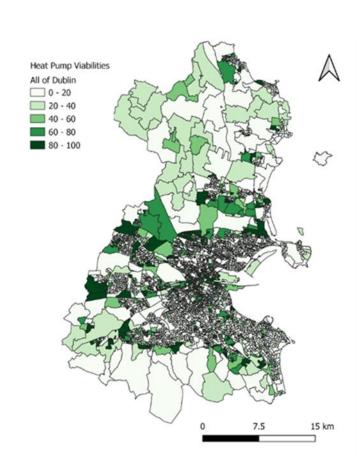
Challenges & BarriersBuildings

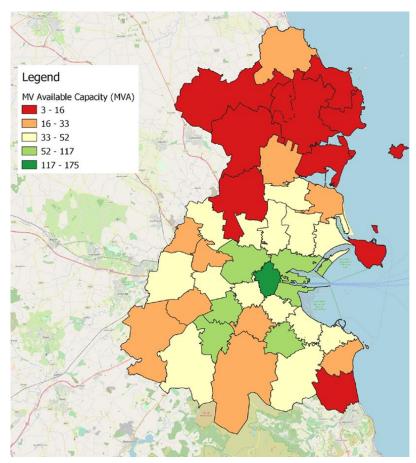

Barriers to building fabric upgrades:


- Accessibility making it possible and easy for decision makers to retrofit their buildings
- Affordability retrofit costs can be quite expensive especially to meet specific building regulation standards
- Appetite there is a need to make businesses and homeowners aware of the benefits of energy efficiency upgrades

Where to Start – Map of Homes with Poor EE in Areas with DPI Below Average

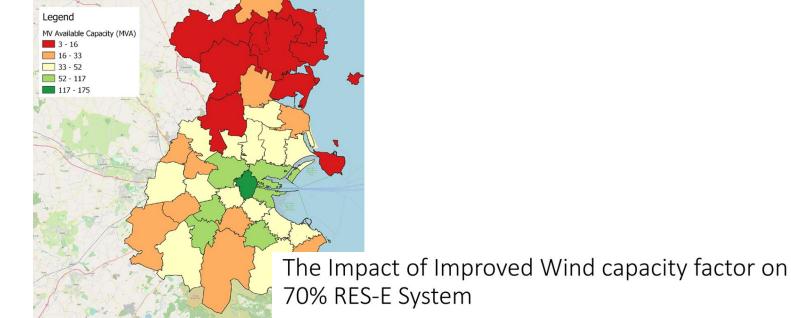
- Building energy efficiency rating (BER) from SEAI database and extrapolated by building age for remaining buildings
- Deprivation Index used to outline residents most at risk to energy poverty
- Both are combined to identify areas where retrofitting should be concentrated first

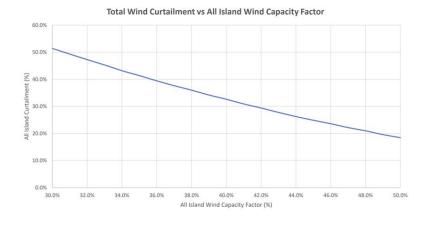



Challenges & BarriersHeat

Barriers to decarbonising heat:

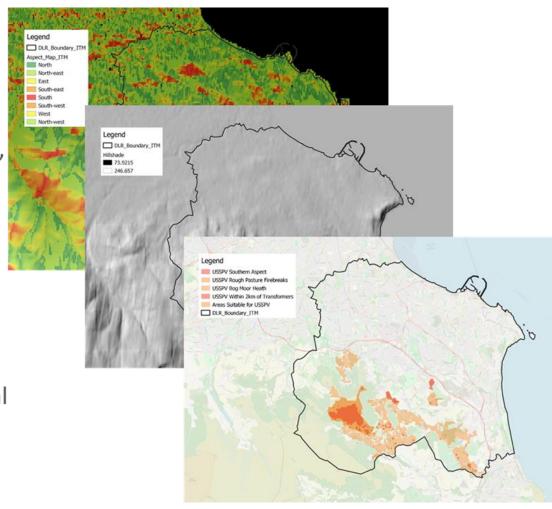
- High capital cost and cheap gas (relative to electricity)
- Suitability of building to adopting heat pumps (suitable heat loss index - also required to secure grants)
- Cost of elec grid upgrades to electrify heat
- Maintaining efficient operation& high level of service



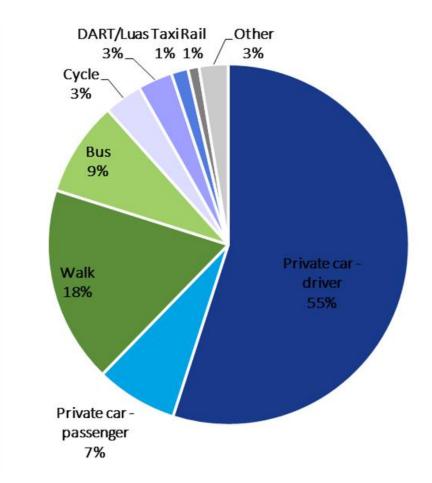

Challenges & Barriers Electricity

Barriers for electricity sector:

- Achieving the scale of generation required - what & where is the potential
- Need for supporting infrastructure - Transformers, power quality equipment, grid connections
- Excessive dispatch down impacting on cost-effectiveness
 role of storage & grid services

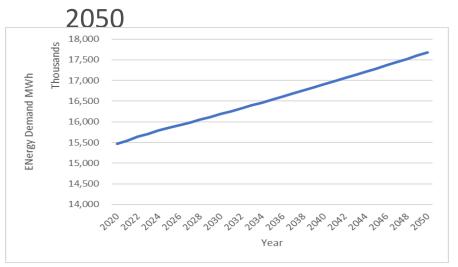

Challenges & Barriers

Electricity - Identifying Local Potential USSPV


Environmental and feasibility constraints:

- Grid proximity
- Environmentally sensitive areas (SPA, SAC, NHA etc.)
- Open space with minimal shading
- Avoid northern slopes >10 degrees and flood zones
- 30m from woodland, rail, roads
- Land use/value (e.g. landfill, cutaway bog)
- Large enough area (10ha)
- Caveat Land character assessment (visual impact) not currently included

Challenges & Barriers Transport


Business-As-UsualBuildings & Transport

Business as Usual	Current	2030	2050	
	Annual Emissions (tCO2)			
Car	1,085,234	917,950	986,108	
LGV	205,014	294,474	316,339	
HGV	247,092	374,547	402,357	
Bus	88,953	115,201	123,755	
E-bike, e-cargobike	0	0	0	
Rail freight	239	239	239	
Passenger rail	37,174	42,627	55,113	
Total	1,663,707	1,745,038	1,883,911	
% change		5%	13%	

- BAU emission projections to 2030 will increase by 21%
- BAU emission projections to 2050 will increase by 33%
- Transport emissions alone will increase by
 13% by 2050
- Building emissions (including heat & electricity) alone will increase by 41% by

Pathway to 2030 & 2050 Transport

Increased Ambition	Current	2030	2050	
	Annual Emissions (tCO2)			
Car	1,085,234	301,054	0	
LGV	205,014	154,575	0	
HGV	247,092	262,760	0	
Bus	88,953	70,476	0	
E-bike, e-cargobike	0	789	0	
Rail freight	239	11,324	0	
Passenger rail	37,174	13,446	0	
Total	1,663,707	814,423	0	
% change		-51%	-100%	

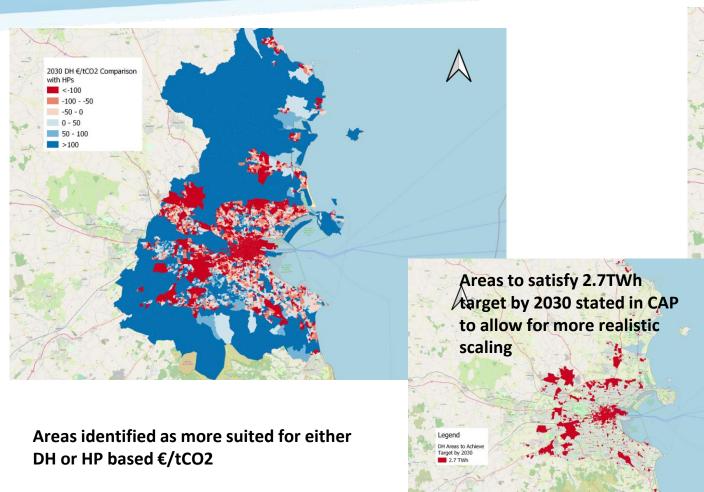
	To 2030	To 2050	
Low-carbon alternative	€/tCO ₂	Abated	
BEV Car	(379)	(649)	
BEV LGV	(209)	(288)	
BEV HGV	179	(313)	
BEV Bus	(22)	(220)	
Walking	(7,982)	(7,904)	
Cycle	(6,011)	(5,955)	
E-bike	(3,760)	(3,625)	
E-cargo bike	(926)	(910)	

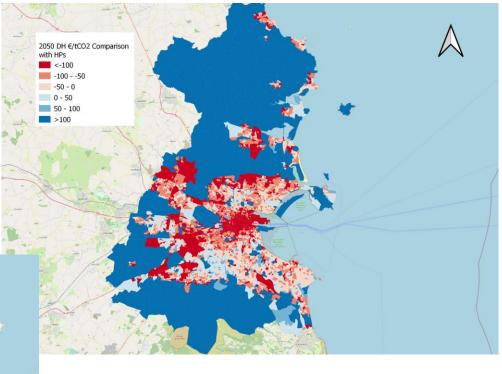
2030:

210k EVs, car-km 40%

Public transport: bus-km 25% 1

Freight: logistics management, EVs, e-cargo bikes, rail

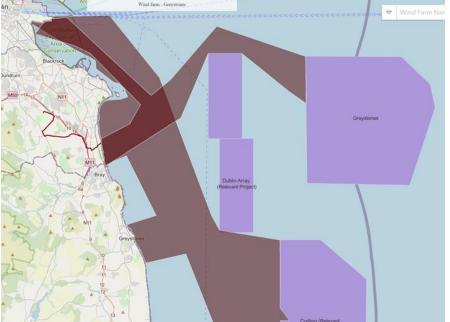

2050:


EVERYTHING electric

Car-km 50%
Bus-km 50%

Heat

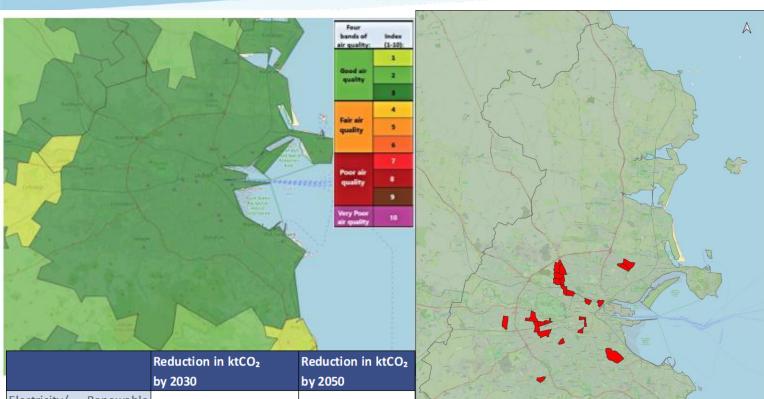
echnology	€/tCO ₂ Median 2050
District Heating	150.6
leat Pumps	263.9


Pathway to 2030 & 2050 Electricity

Technology	(GWh	tCO ₂ Saved	
reditiology	2030	2050	2030	2050
Utility-Scale Solar PV	854	1,057	277,124	343,036
Onshore Wind	130	325	42,163	105,572
Offshore Wind	5,241	13,124	1,700,768	4,258,600
Building-Integrated Solar PV	84	270	27,237	87,763
Curtailment Assumed Avoided by EV+DH	462	2,421	149,892	785,551
Total	6,309	14,776	2,047,292	4,794,972

Technology	€/MWh	€/tCO ₂ Abated
Offshore Wind	65.6	-55.0
Onshore Wind	52.9	-94.0
Utility-Scale Solar PV	50.6	-101.1
Closed-Cycle Gas Turbine	97.8	N/A
Open-Cycle Gas Turbine @ 500 hours	228.9	N/A
Open-Cycle Gas Turbine @ 2000 hours	157.6	N/A
Building-Integrated Solar PV	131.1	147.0
Current Generation Mix (2019)	83.4	N/A

Social & Economic Impacts


Social and economic benefits from the Dublin Region Energy Masterplan:

- Health Benefits Improvement in Local Air
 Pollution and Air Quality
- Local employment generated (direct & indirect)
- Avoided Carbon Costs Cost of Carbon (Shadow price)
- Reduction in Energy Bills for Residents & Businesses
- Warmer Homes
- Reduction of Fuel Poverty
- Reduced reliance on Fuel Imports

Social & Economic Impacts

Decrease energy costs by a total of
 €519 million per year from renewable
 energy technologies (onshore and
 offshore wind, utility scale solar PV and
 building integrated solar PV)

 Avoid a cost of over €24 billion, if we were to apply the shadow price of carbon to the total avoided emissions over the lifetime of the masterplan

• Increase direct jobs by over 182,500 by

2050

Electricity/ Renewable			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2030
Energy Generation & Storage	2,047	4,795	Technology	Increase in RE Potential by 2050 GWh	tCO₂ Saved by 2050	Reduction in Energy Costs in €
Heating/ Low Carbon Technologies/ Building 1,212 Fabric Upgrades	1,783	Onshore Wind	267	86,569	8,357,100	
		Offshore Wind	10,761	3,492,052	336,819,300	
		Utility Scale Solar PV	1,057	343,036	138,784,100	
Transport	844	1,662	Building Integrated Solar PV	270	87,763	35,451,000
Total	4,103	8,240	Total	12,355	4,009,420	519,411,500

If the Dublin Region were to carry out all the suggested recommendations, it could potentially:

- reduce emissions by 4,103 ktCO₂ by the year 2030
- reduce emissions by 8,240 ktCO₂ by 2050
- increase **renewable electricity** generation in the Dublin Region to **14,780 GWh** by 2050.
- meet the 2030 targets and exceed the 2050 target, going beyond an 80% reduction and becoming carbon-negative (-295 ktCO₂) by 2050
- decrease energy costs by a total of €519 million per year from renewable energy technologies (onshore and offshore wind, utility scale solar PV and building integrated solar PV)
- avoid a cost of over €24 billion, if we were to apply the shadow price of carbon to the total avoided emissions over the lifetime of the masterplan
- increase direct jobs by over 182,500 by 2050

If the Dublin Region were to carry out all the suggested recommendations, it could potentially:

 Create a healthier city with cleaner air, quieter streets with more space for nature and people

Key Recommendations

Energy Planning

- Guidelines for local level energy planning are made available to municipalities
- Energy planning becomes a requirement for implementing local level energy plans with clear pathways and long-term commitments to a low-carbon future

Building Energy Efficiency

- To alleviate energy poverty, the county should consider **prioritising energy efficiency upgrades in areas that** have been identified in this masterplan as being energy poor.
- Regulatory solutions to tackle the issue of split incentives should be considered, minimum energy efficiency standards for rented properties are applied; funding mechanisms for energy efficiency upgrades, particularly addressing long payback periods and high upfront costs in both the residential and non-residential sector, need to be addressed.

Key Recommendations

Heat

- Evidence-based **zoning for DH** and having requirements in place for buildings in these areas re connection, futureproofing, characterising heat sources (waste heat reports)
- Ensure low-carbon heat sources are treated fairly in Part L building regulations (in line with REDII)
- Make **financial support more easily available** for these low-carbon solutions

Electricity

- Support the development of generation assets where suitable
- Development of **enabling infrastructure** needs to be supported to realise renewable potential
- Promote the adoption of building integrated PV particularly in buildings where demand and production profiles match

Transport

- Electrifying 550k cars will not solve Dublin's transport problems need to reduce no. of cars substantially
- Focus needs to be on active travel and buses to 2030 additional powers required for LAs to reallocate road space to more sustainable modes

Think Global, Act Local

Dublin Energy Masterplan

Zero Together

Implementation of projects at scale

Spatially-led cost-optimal pathways to 2030 and 2050 targets

Outlines actions that must be invested & implemented every year to 2050 and engage all stakeholders required to make that transition.

Low-carbon Projects to bundle and deliver largescale investments required

Key Takeaways

- Dublin can achieve its 2030 and 2050 targets
- This will result in avoided costs of €24 billion, this cost would be better invested in renewable sources of energy, public transport and active travel, energy efficient homes and heating options to reduce emissions and citizens' utility and mobility bills
- Active travel is the most cost effective way to decarbonise transport and can bring transformative societal benefits for Dublin

Novel Approach - Need to work together!

Websites:

- Our maps https://codema-dev.github.io/
- Our network https://energy-modelling-ireland.github.io/

Scripts:

- Building stock model based on DEAP https://github.com/codema-dev/rc-building-model
- Reproducible Python scripts used in creating the maps on codemadev.github.io - https://github.com/codema-dev/projects

Apps:

- Dublin Energy App https://github.com/codema-dev/dublin-energy-app
- Irish Building Stock Generator https://github.com/energy-modelling-ireland/ibsg

Email:

eoin.ahern@codema.ie john.oshea@codema.ie rebecca.cachia@codema.ie

Phone (+353) 01 707

9818

Web www.codema.ie

